A universal Cauchy functional equation over the positive reals
نویسندگان
چکیده
منابع مشابه
Universal Vector Bundle over the Reals
Let XR be a geometrically irreducible smooth projective curve, defined over R, such that XR does not have any real points. Let X = XR×R C be the complex curve. We show that there is a universal real algebraic line bundle over XR × Pic d(XR) if and only if χ(L) is odd for L ∈ Picd(XR). There is a universal quaternionic algebraic line bundle over X × Pic(X) if and only if the degree d is odd. Tak...
متن کاملNon-Archimedean stability of Cauchy-Jensen Type functional equation
In this paper we investigate the generalized Hyers-Ulamstability of the following Cauchy-Jensen type functional equation$$QBig(frac{x+y}{2}+zBig)+QBig(frac{x+z}{2}+yBig)+QBig(frac{z+y}{2}+xBig)=2[Q(x)+Q(y)+Q(z)]$$ in non-Archimedean spaces
متن کاملOn the Cauchy Completeness of the Constructive Cauchy Reals
Intuitionistic set theory without choice axioms does not prove that every Cauchy sequence of rationals has a modulus of convergence, or that the set of Cauchy sequences of rationals is Cauchy complete. Several other related non-provability results are also shown.
متن کاملnon-archimedean stability of cauchy-jensen type functional equation
in this paper we investigate the generalized hyers-ulamstability of the following cauchy-jensen type functional equation$$qbig(frac{x+y}{2}+zbig)+qbig(frac{x+z}{2}+ybig)+qbig(frac{z+y}{2}+xbig)=2[q(x)+q(y)+q(z)]$$ in non-archimedean spaces
متن کاملWeighted Cauchy-type problem of a functional differ-integral equation
In this work, we are concerned with a nonlinear weighted Cauchy type problem of a differ-integral equation of fractional order. We will prove some local and global existence theorems for this problem, also we will study the uniqueness and stability of its solution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2011
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2010.09.063